Next Generation PSA Software Workshop at NEL, Nov. 13-14, 2007

Seismic PSA Method for Multi-Unit Site---CORAL-reef

Tadakuni Hakata

TH Consulting Email : tadakuni.hakata@nifty.com

Introduction

Recent regulatory movement with respect to PSA is "integrated site risk".

- NSC Performance Goals issued in July 2006 require that the effects of multiple nuclear power plants in a site should be considered to meet the safety goals of CDF and CFF.
- Draft alternative of 10CFR 50 for new reactor plants requires assessment of integrated site risk in addition to individual reactor risks to meet the US NRC's QHO.
- External events, especially earthquakes, may cause simultaneous multiple nuclear reactor damages in a site.
- To assess integrated site risks, seismic PSA method for multi-unit sites: CORAL-reef code has been developed
- The essential models and some sample analyses are presented.

1

Reference: Paper published in UK magazine of Reliability Engineering & System Safety, Vol.92, No.7, July 2007, 883-894

Seismic PSA Method for Multi-Unit Sites

- Maximum units in a site is 8 in the world and 7 in Japan. To make it practical, tactful and efficient, to analyze up to 9 units simultaneously, following strategy is adopted.
 - It is known from detailed seismic PSAs that a limited number of dominant or key structures, equipment and accident sequences dominate the results. Those key elements are simulated and the others may be lumped together as nondominant residues
 - Reactors are grouped by the similarity of design and architectures

Dominant Contributors by Risk Reduction Potential (Surry plant for NUREG-1150)

Dominant Contributors Ranked by Risk Reduction Potential			
Ceramic Insulators	50%		
4KV Busses-1H	36%		
4KV Busses-1J			
Condensate Storage Tank	26%		
Diesel Generator 1-failure to start	22%		
Diesel Generator 3-failure to start			
Refueling Water Storage Tank	21%		
480V MCC-1H	9%		
480V MCC-1J			
Auxiliary Feed-water – XCONN	3%		
OEP-DG-3U2	3%		
Other basic events	<1% each		

Dominant Accident Sequences in order of Importance (Surry plant for NUREG-1150)

Dominant Accident Sequences in order of importance			
T1-6	(LOSP with Loss of Cooling)	40%	
T1-1	(LOSP leading to Seal LOCA)	27%	
T3-1	(Transient leading to Seal LOCA)	8%	
SLOCA-7	(Small LOCA with failure of HPSI)	5%	
T1-5	(LOSP with F&B and AFWS failures)	5%	
T3-6	(Transient with Loss of Cooling)	3%	
ALOCA-3	(Large LOCA with failure of LPI)	3%	

Essential Models and Outputs

- Models
 - Monte Carlo approach for up to 9 units in max. 3 groups. Point Estimate and Uncertainty Analysis can be performed.

5

Monte Carlo Multivariate Correlation

 Basic equations for correlation analysis by Monte Carlo approach are developed that compute correlated failures of structures and components for zero-partial-complete, in series/parallel, and inside/across units

Verification of Correlation Equations

• Correlation equations can be verified by the formula:

 $_{ij}$ = Co-variance(S_i,S_j) / Var(S_i)Var(S_j) , $_{i}^{2}$ = Var(S_i)

• Sensitivity analysis on sampling numbers (by CORAL-reef):

Rules for Assigning Response Correlation

Rules for	r Assigning	Res	onse	Corre	elation	
			_			-

- 1. Components on the same floor slab, and sensitive to the same spectral frequency range (i.e. ZPA, 5 to 10 Hz, or 10 to 15Hz) will be assigned response correlation = 1.0
- 2. Components on the same floor slab, and sensitive to different ranges of spectral acceleration will be assigned response correlation = 0.5
- Components on different slabs (but the same building) and sensitive to the same spectral frequency ranges (ZPA 5 to 10 Hz or 10 to 15Hz) will be assigned response correlation = 0.75
- 4. Components on the ground surface (outside tanks, etc.) shall be treated as if they were on the grade floor of an adjacent building.
- 5. "Ganged" valve configurations (either parallel or series) will have response correlation = 1.0
- 6. All other configurations will have response correlation equal to zero.

Asymmetric Probability Distribution of Seismic Hazard Uncertainty

Asymmetric probability distribution of seismic hazard uncertainty is presented by 4 log-normal distributions:

9

Results:

1) Mean number of plants with core damage is 1.66 out of 5

2) Site CDF / site-year is about 3 times mean CDF/ reactor-year

11

Sample Analysis 2

Uncertainty Analysis of CDF

Level-2 PSA Analysis Models

- Seismic Level-2 PSA by Monte Carlo method can be performed at the same time with Level-1 PSA for up to 9 units in a site
- LERF (short-term), CFF(long-term) and souse terms for radioactive release categories for individual units (1/ry) and integrated site (1/site-year) for all the patterns of unit failure combination, e.g. 32 patterns of combination 5 unit-site.
- · Containment failure event tree:

13

Sample Analysis 3

Seismic Accident Management: Mutual Support by Tying between Units

Effects of Mutual Support in Multi-Unit Site

Tying risk-dominant components within a safety functional system is effective.

Sample Analysis shows effect of 50% reduction in site CDF

Risk Metrics for Integrated Site Safety

- Current safety regulation and PSA are based on individual reactor safety in the term of per reactor-year
- However it is not reasonable that intact reactors just looking at damaged reactors without any help in a site.
- New regulatory framework would require consideration of integrated site risks.
- Independence is important to maintain high reliability in design and operation; on the other hand, mutual support accident management is recommended strongly for enhancement of seismic safety of NPP.
- Emergency planning should take consideration of multiple reactor failures by earthquakes
- PSA technology for multiple nuclear reactors will be necessary as a state of art PSA. The technology will be dispensable for developing next generation fleets of modular-type small reactors.

Risk Metrics for Integrated Site Safety

Integrated Ste Metrix サイト総合指標	Definition 定 義	Remarks 備 考
Integrated Ste Reactor Damage サイト総合原子炉損傷	Integrated Ste ODF, LERF, OFF, Source-term サイトODF, LERF, OFF, ソースターム	単位は 1/サイト年
Ste Risk Factor サイトリスク比	?= ^{Integrated Site CDF (/site.y)} Mean CDF in site (/ry) ?= <u>サイトCDF(/サイト年)</u> サイト平均CDF(/炉年)	1 ≤ ? ≤ N N = Number of units 原子炉基数
Mean number of simultaneous Reactor Damages 同時原子炉損傷平均基数	? = <u>n ?p(n)</u> ? = <u>p(n)</u> n=1 ~ N(原子炉基数)	n = Number of Smultaneous Reactor Damages 同時損傷の原子炉基数 p(n) = Probability of n n基同時損傷の確率
Ste Risk Conservation Criteria サイトリスク保存則	??? = N	Total site risks is conserved, if unit inter-relations are only correlation 原子炉間の関連が相関のみの場合 には、サイトリスクは保存される
Multi-unit site effect factor ? 多数基効果指標	? = ??? / N =サイトリスク比 x <u>平均同時損傷</u> 全基数 or ?=N/??	Multi-unit site effect (Pus): ? < 1 サイトリスク減(相互支援等) Multi-unit site effect (minus): ? > 1 サイトリスク増(マイナス効果)

17

Conclusion

- New regulatory framework tends to require integrated site risk assessment to meet safety goals.
- Seismic PSA methodology for multi-unit site "CORAL-reef" has been developed. There still remains needs of further developments, such as correlation data, Level 3 PSA.
- Increase in site risks due to increased number of reactors in a site may be compensated to a some extent by multi-unit PSA and accident management by mutual support.
- Site integrated CSD / LERF/ CFF per site-year are desired to be assessed in addition to per reactor-year to enhance real risks for nuclear sites
- Seismic PSA method for multi-unit sites will be useful for current reactors and next generation reactors, including fleets of future advanced modular-type small reactors.

END Thank you for your attention